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Abstract—The pervasive presence of deep neural networks
(DNNs) has made artificial intelligence (AI) an integral part
of tactical communication and networking systems. However,
the overconfidence of modern DNNs poses significant risks in
mission-critical applications. Selective Classification (SC) is a
promising paradigm to mitigate this issue by enabling DNNs
to abstain from unreliable predictions. Although there is a
plethora of work on SC in the computer vision (CV) domain,
there is no evaluation of the utility of these approaches in tacti-
cal communication scenarios. This work evaluates State-of-the-
art (SOTA) SC methods within the tactical domain, focusing
on their applicability to Automatic Modulation Classification
(AMC) and Network Intrusion Detection System (NIDS) tasks
using the RadioML and ACI IoT datasets, respectively. Our
key findings show a 55% risk reduction for AMC with a 20%
loss in coverage and near-zero risk for NIDS with minimal
coverage loss. Furthermore, we analyze SC performance under
distribution shifts, revealing limitations of traditional methods
in handling covariate and semantic shifts. Finally, we explore
training strategies to enhance SC performance.

I. INTRODUCTION

The rapid advancements in Al have revolutionized nu-
merous fields, from healthcare [1] to industrial automation
[2]. Military communication and tactical systems are no
exception to this trend [3], [4]. In particular, the inte-
gration of DNNs in areas such as automated modulation
classification (AMC) and network intrusion detection sys-
tems (NIDS) has significantly enhanced capabilities for
intelligence gathering and securing network infrastructures.
However, these advancements come with challenges related
to the reliability of DNN inference. In mission-critical
applications, it is essential for DNNs to abstain from making
predictions when confidence is low. Unfortunately, modern
DNNs often display overconfidence in their predictions,
even when incorrect [5]. This overconfidence undermines
their trustworthiness and raises concerns about their deploy-
ment in high-stakes tactical scenarios.

Various approaches have been developed under the um-
brella term of SC. The main approaches attempt to train
DNNs to recognize and act upon their uncertainty. SC
improves the resilience and reliability of the DNN by
abstaining from giving uncertain or under-confident infer-
ences. This reduces the error rate but comes at the cost
of coverage, defined as the percent of inputs the DNN
provides inference for. Approaches in this field has been
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developed with CV domain in focus. Prior work studied
an abstention option into the DNN, either by modifying the
training algorithm or the DNN architecture [6]-[9]. Another
line of research addresses overconfidence through post hoc
adjustments [10]-[13]. To date, no study has explored the
limitations of SC methods within this critical area.

In this work, we evaluate SOTA SC approaches in AMC
and NIDS. Specifically, we seek to answer the following
questions: (i) How much risk can SC reduce within a given
coverage budget? (ii) Is SC effective under distribution
shifts? (iii) Is there a particular training mechanism that can
make DNNs selective by nature? To answer the questions
posed above, we conduct a systematic study on a radio fin-
gerprinting dataset RadioML [14] and a NIDS dataset ACI
IoT [15]. In summary, we make the following contributions:

e We propose a framework for a tactical communication
system enhanced by human feedback to improve reliability.
The framework incorporates a selective classification mod-
ule, which determines whether to defer decision-making to
a human expert or proceed with the automated decision.
We show that irrespective of the effectiveness of the human
decision, SC can reduce risk for RadioML by 55% for a
loss of coverage of only 20%. For ACI IoT dataset, the risk
can be brought down from 2.5% to 0.05% for as little as
5% loss in coverage;

e We show that SC cannot handle distribution shifts. With
traditional SC, only about 30% samples can be detected
while about 80% can be detected with approaches focusing
on detecting distribution shifts. This indicates that SC
cannot address resiliency;

e We investigate different training strategies which have
proved to be successful in vision domain for improving SC
performance. We find that training with entropy regulariza-
tion and stochastic weight averaging is conducive to SC and
it provides 1% improvement in SC for the RadioML dataset
and VGG8 architecture.

II. BACKGROUND AND RELATED WORK
A. The Problem of Selective Classification

Let X represent the feature space and Y the label space,
where X could denote the distribution of input I/Q samples
or network traffic features, and Y the corresponding class
labels. The aim is to learn the conditional distribution
P(Y | X), with a prediction model f(-;0) : X — Y,



parameterized by 6 (we will omit the 6 in future references
to f unless its explicit mention is necessary). The risk of
the task, evaluated with a loss function ¢(-), is expressed
as:

Epx,v) [C(f(z;0),y)] -

A prediction model with a rejection option is defined by
two functions (f, g), where g, : X — R acts as a selection
function, serving as a binary qualifier for f:

f(x) if g () > 7,
not sure otherwise.

(f,9)(x) = {

In this framework, the model refrains from making a
prediction when the value of the selection function g(z),
also known as the confidence score, falls below a predefined
threshold 7. Different methods use varying forms of g(z)
to quantify uncertainty. The covered dataset is defined as:

{z|g-(z) =7},

and the coverage is the ratio of the size of the covered
dataset to the total dataset. This setup allows for a trade-
off between coverage and risk, which motivates rejection
option methods. These methods provide a way for the model
to abstain from making predictions when the uncertainty is
too high, thus improving reliability.

B. Existing Work on Selective Classification

Softmax Probability Based Approaches. The work in
[16] first proposed to use softmax probability to quantify
the confidence of DNNs and detect misclassified samples.
Geifman et al. [17] developed a procedure for determining
the threshold for attaining a target risk with a theoretical
guarantee. Later work [18], [19] has further investigated
ways to improve the softmax response of the DNNs via
robust training. Feng et al. [18] proposed to use the SC
mechanisms suggested in [6], [8], [9] but discards the
modifications to the DNN architecture after training. After
that, the softmax probability would be used for quantifying
the confidence of the DNN. Zhu et al. [19] argue that the
overconfidence issue is connected to the convergence of the
DNN. They propose to use stochastic weight averaging [20]
and sharpness-aware minimization [21] to achieve a flatter
minimum.

Confidence Calibration Based Approaches. One influ-
ential baseline for modern DNN calibration is tempera-
ture scaling [22]. This post hoc method multiplies logits
by a scalar temperature parameter to adjust confidence
scores without altering model accuracy. Temperature scal-
ing demonstrates significant improvements in calibration
across multiple datasets and architectures, serving as a
lightweight yet effective solution for classification tasks.
Kull et al. [23] extended temperature scaling by modeling
logits as a Dirichlet distribution, enabling better calibration
for imbalanced datasets. Gupta et al. [24] fit a piecewise
spline function to adjust confidence scores, allowing more

flexibility than linear methods like temperature scaling.
Cattelan et al. [13] introduced logit normalization with
tunable parameters to improve calibration across diverse
architectures.

Training Approaches. Prior work modifies the DNN archi-
tecture and/or the training mechanism. Geifman et al. [6]
proposed a three-headed DNN consisting of a selection
head, prediction head, and an auxiliary prediction head.
The work in [8] and [9] proposed a C' + 1 way classifier
where the C' is the number of classes and the additional
logit is used to decide on the abstention decision. These
two approaches differ in the training mechanism. While [8]
proposes to change the weights of the samples dynamically
during training, [9] proposes to use portfolio theory [25].
The work in [7] estimates model confidence by training
a separate confidence estimator which is then used for
abstention decision.

Bayesian Uncertainty Based Approaches. Bayesian deep
learning provides the foundation for uncertainty modeling
in DNNGs, but it faces challenges due to the large number of
parameters, making traditional Bayesian inference computa-
tionally intractable. Two prominent methods for estimating
uncertainty are Monte Carlo Dropout (MC Dropout) [26]
and Deep Ensembles [27]. MC Dropout adds dropout layers
to the network, using multiple forward passes at inference
to approximate uncertainty. Deep Ensembles train multiple
models with different initializations or data splits, aggre-
gating their predictions for uncertainty estimation. While
both approaches are effective, they struggle with real-time
performance and scalability. A recently growing line of
work focuses on using Dirichlet distributions in training
DNNs [28]-[30].

This work. In this paper, we focus on post hoc confidence
calibration and training-based approaches as these two have
proved to be the most successful in the CV domain. Uncer-
tainty based approaches are too computation-expensive to
be practical in dynamic tactical scenarios.

III. METHODOLOGY AND EXPERIMENTAL RESULTS

Figure 1 shows the framework we consider in this work.
The input data traffic being received is passing through
a DNN trained to extract specific intelligence from the
raw input. To improve the reliability, instead of relying
directly on the output of the DNN, we place a selective
classification module and a human authority in between.
If the SC determines the output of the DNN be reliable
enough, it passes the output for necessary action. Otherwise
the output is passed to the human authority. The authority,
based on the output of the SC and additional contextual
information not available to the classifier, decides whether
to ignore the prediction or to pass to a more capable DNN
or a human expert. This way, we create a human-in-the-
loop system striking a balance between the automation from
the DNN and the expertise provided by a human. The



most crucial part of this framework is the SC. We analyze
different SOTA designs of the SC to find the answers to the
questions posed in Section L.
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Fig. 1: Framework for reliable tactical communication.

A. Experimental Setup

Datasets. To analyze the SC methods, we consider two
different tasks of military importance - AMC and NIDS.
For the AMC task, we utilized the RadioML 2018.01A
open-source dataset [14], which contains labeled data for 24
different analog and digital modulation schemes across var-
ious propagation scenarios. The dataset includes over-the-
air I/Q samples transmitted via the B210 universal software
radio peripheral (USRP), employing the Analog Devices
AD9361 as the RF front-end. Modulations were captured
under varying signal-to-noise ratios (SNRs), ranging from -
20 dB to 30 dB. For the NIDS task, we employ the ACI IoT
[15] dataset. It consists of 12 different classes of attacks on
IoT network and 84 distinct features. This dataset simulates
a realistic scenario reflecting the dynamic behavior of the
connected devices.

DNN architectures: For each dataset, we investigate two
different network architectures to study the relation between
the network complexity and the SC. We use a custom 5
layered Convolutional Neural Network (CNN) (for both
datasets, we refer to it as CNN5), a 1D variant of the VGG
architecture consisting of 8 layers (for RadioML dataset),
and a three layered Multi-layer Perceptron (MLP) (for ACI
IoT datsaet).

Training. We train the DNNs for 30 epochs with Adam
optimizer using learning rate of 0.01. We decrease the
learning rate to Tlo—th at 15-th and 25-th epochs. We set the
batch size to 256. We refer to this as the vanilla training
approach. As SNRs below O dB are of limited practical
utility, we only train with data samples from SNRs above
or equal to 0 dB for the RadioML dataset. For the ACI IoT
dataset, we drop the classes ARP Spoofing and UDP Flood
as these classes of attack have negligible number of samples

(5 and 791 respectively) as compared to the other classes
(rest of the classes have minimum of 6,000 samples).

SC approaches. To analyze the utility of the SC, we
investigate a wide array of approaches - trust score [31],
temperature scaling [22], confidnet [7], p-Norm [13], latent
heteroscedastic classifiers (HET) [32], adaptive temperature
scaling (ATS) [33]. Apart from these approaches, we also
investigate the utility of energy [34] and generalized entropy
(GEN) [35] for out-of-distribution detection.

Evaluation Metrics. When evaluating the performance of
these approaches, we use the following metrics:

o Area Under Receiver Operating Characteristic (AU-
ROC): Measures the ability of the SC to distinguish
between correct and incorrect predictions across all
possible decision thresholds. It reflects the trade-off
between correctly detecting incorrect inference and
incorrectly identifying correct predictions as incorrect
ones. A higher value of AUROC denotes high capabil-
ity of separating correct and incorrect predictions.

e Fulse Positive rate at x% True Positive rate (FPR):
Represents the rate of false positives (correct infer-
ences attributed as incorrect) when the DNN achieves
a true positive rate (correctly detecting incorrect sam-
ples) of x%. Lower FPR indicates better DNN cali-
bration and high capability of separating correct and
incorrect predictions leading to enhanced reliability,
particularly at high sensitivity thresholds.

e Risk at x% Coverage (Risk): Quantifies the expected
risk (e.g., error rate or loss) when the DNN makes
predictions on x% of the data (i.e., abstains from
predicting for the most uncertain (1-x)%). Lower risk
at a given coverage reflects better selective prediction
performance.

o Area Under the Risk Coverage Curve (AURC): Sum-
marizes the trade-off between risk and coverage across
all possible coverage levels. A lower AURC indicates
a DNN that minimizes risk more effectively while
maintaining high coverage. This acts as an average of
the risk across different coverages.

We report FPR at 95% TPR and Risk at 95% coverage.

B. Performance Evaluation

Tables I, II, IIT and IV present the performance of the
SC approaches across different architectures and datasets.
For the ACI IoT dataset, the results demonstrate exceptional
reliability, with the MLP architecture achieving a risk as low
as 0.01% and the CNN architecture achieving 0.05%—both
utilizing the trust score. In addition to the minimal risk,
the trust score achieves a very low FPR, highlighting its
effectiveness in distinguishing between correct and incorrect
predictions for this dataset. Conversely, the trust score
performs poorly on the RadioML dataset. Here, the best-
performing methods are HET (for the CNN architecture),
with a risk of 12.58%, and p-norm (for the VGGS8 ar-
chitecture), with a risk of 5.14%. Notably, the p-norm



method demonstrates that when an appropriate SC approach
is applied, substantial improvements in reliability can be
achieved. For example, even at a coverage of 95%, p-norm
attains a remarkably low risk.

This conclusion is further supported by the risk-coverage
plots shown in Figure 2. These plots illustrate that for the
RadioML dataset and CNN architecture, the risk decreases
from 18% at 100% coverage to 8% at 80% coverage—a
55% reduction in risk for a 20% loss in coverage. Similarly,
for the ACI IoT dataset, the risk effectively drops to zero
when the coverage falls below 95%. From the results
presented in Table I - IV and Figure 2, it emerges that
utilizing appropriate SC provides substantial gain. At the
same time, these results also highlight that the choice of
the appropriate method is not straightforward and currently
there is no principled way for the task even in the CV
domain. This opens up a new research direction for post
hoc selective classification approaches.
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Fig. 2: We show the RC curve for the top two SC methods
on CNN architecture. The MSP is shown as the default
baseline.

TABLE I: Performance comparison of different SC ap-
proaches for the RadioML dataset and CNN architecture.

Method AUROC | FPR Risk | AURC
MSP 91.23 56.12 | 14.85 3.38
Trust Score 87.56 69.49 | 15.82 4.16
P-Norm 91.23 55.88 14.8 3.37
Temperature Scaling 91.24 55.98 | 14.79 3.37
ATS 82.18 59.68 | 15.28 7.25
HET 92.56 5245 | 12.58 2.68
energy 91.98 54.68 | 13.74 3.25
GEN 90.68 57.37 | 14.95 35

C. SC under Distribution Shift

To evaluate the utility of the SC approaches under distri-
bution shifts, we analyze covariate shift and semantic shift.
1) Covariate Shift: For the RadioML dataset, covariate
shift is introduced by training the DNNs only on
samples with signal-to-noise ratio (SNR) values of 0
dB and above. The unseen samples, those with SNR
values below O dB, represent covariate-shifted inputs,
as they differ in noise power compared to the training

set.

TABLE 1II: Performance comparison of different SC ap-
proaches for the RadioML dataset and VGG8 architecture.

Method AUROC | FPR Risk | AURC
MSP 93.06 46.03 | 12.25 2.42
Trust Score 88.66 48.59 | 13.62 3.16
P-Norm 93.06 46.03 5.14 2.12
Temperature Scaling 93.02 46.27 | 12.25 243
ATS 76.93 4893 | 12.76 6.95
HET 93.46 45.45 | 12.05 2.35
energy 93.98 4595 | 12.14 2.35
GEN 93.07 4548 | 12.41 247

2) Semantic Shift: Semantic shift occurs when the DNN
encounters semantically distinct or out-of-distribution
(OOD) inputs. For the RadioML dataset, this is mod-
eled by training the VGG architecture on all modu-
lation types except FM and GMSK. These excluded
modulation types are treated as OOD classes. During
evaluation, we measure the percentage of the samples
from FM and GMSK modulation for which the SC
abstains.

TABLE III: Performance comparison of different SC ap-
proaches for the ACI IoT dataset and CNN architecture.

Method AUROC | FPR | Risk | AURC
MSP 94.256 29.83 | 0.98 0.19
Trust Score 99.8 0.78 0.05 0.03
P-Norm 94.02 30.7 1.01 0.19
Temperature Scaling 69.4 56.7 2.01 2.36
ATS 46.9 80.24 | 1.01 0.19
HET 95.22 28.45 0.9 0.15
energy 94.50 29.6 0.96 0.2
GEN 94.98 28.2 0.94 0.18

TABLE IV: Performance comparison of different SC ap-
proaches for the ACI IoT dataset and MLP architecture.

Method AUROC | FPR | Risk | AURC
MSP 95.23 23.51 | 0.35 0.085
Trust Score 99.82 0.78 0.01 0.011
P-Norm 95.17 22.84 | 0.36 0.084
Temperature Scaling 59.3 76.6 1.1 0.12
ATS 43.23 90.23 1.1 0.12
HET 95.53 224 0.29 0.076
energy 95.63 22.45 0.2 0.075
GEN 95.43 2145 | 033 0.079

A similar approach is applied to the ACI IoT dataset.
The MLP architecture is trained without the Ping Sweep
and Syn Flood attack classes, as well as ARP Spoofing
and UDP Flood. These four excluded attack types become
OOD classes, and the robustness of the SC is measured by
evaluating on what percentage it abstains from inferring on
these OOD inputs.

Figure 3 shows the detection rate of OOD samples
across various SC methods. Generalized approaches (MSP,
Trust Score, p-norm, HET) perform poorly on both datasets
having detection rate of about 50% for ACI IoT with



MLP3 and 30% for RadioML with VGGS8. In contrast,
specialized methods (GEN, Energy) perform significantly
better—GEN detects 83% and Energy 63% on ACI IoT
with MLP3, and 73% and 56% on RadioML, respectively.
However, under covariate shift in RadioML, all methods
detect less than 20% of shifted samples. This gap highlights
that generalized SC methods lack robustness under domain
shift, and specialized approaches are necessary.
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D. Training DNNs to be Selective

In order to evaluate training strategies to make the
DNN more selective, we investigate combination of four
strategies: (i) entropic regularization [18], (ii) supervised
contrastive learning [36], (iii) stochastic weight averaging
(SWA) [20], and (iv) cosine similarity classifier (CSC).
First, we minimize the loss function: L0101 = Log + A *
Lentropy Where Log is the cross-entropy loss, Lentropy =
H (softmax(f(x;6))) is the Shannon-entropy of the output
softmax probability, and Ly, is the total loss. Second,
we extract features fr_i(x) from L — 1-th layer of a
L layered DNN and employ supervised contrastive loss
(supcon loss) together with standard cross-entropy loss
to train the network. The is motivated by the theory of
neural collapse [37] showing features (of a particular class)
from a well-trained network cluster around the class mean.
Conversely, with supcon loss, we constrain the feature
vectors from a class to align in one direction. This, in
turn, should place the incorrectly predicted samples in
between the direction of two classes and thus improve
SC performance. Third, we note that SWA is proven to
be conducive to generalization [20], [38] and SC [19] in
CV domain. In this approach, when the DNN is close to

convergence, we checkpoint the DNN after each epoch and
average the parameters of those checkpoints to obtain the
final DNN. Fourth, we replace the logit layer with CSC
after training the DNN. The CSC measures the similarity
of the input feature to the weight vectors for each class.
Formally, given a feature vector f;_1(x), and the weights
matrix W, the output of the cosine similarity classifier for
i-th class is §; = m% where W, is the -
th column of the weight matrix corresponding to the i-th
class and || - || denotes the Lo norm. The motivation for
this step comes from the effectiveness of CSC on few-shot
classification [39], [40]. As the weight matrix, we use the
weight matrix of the pre-trained logit layer.

TABLE V: Comparison among different training ap-
proaches for SC performance. We show for VGG8 archi-
tecture and RadioML dataset.

Training Approach Risk | AURC
Vanilla training 5.14 242
Entropy Regularization 5.65 2.54
Entropy Regularization + SWA 4.19 2.11
Entropy + SWA + CSC 6.24 2.67
Entropy + SWA + Supcon 5.14 2.34
Entropy + SWA + Supcon + CSC 6.2 3.12

Table V reports the performance for various combinations
of these training strategies for the RadioML dataset and
VGGS architecture. From Table V, we notice that the com-
bination of entropy regularization and SWA is clearly the
only one improving performance over the vanilla training.
As SWA provides with wider and consequently less sharp
minima, sharper minima is harmful for SC. As a result,
research into techniques which encourage flatter minima
might be more useful for SC.

IV. CONCLUSION

In this paper, we have evaluated the state of the art
approaches for Selective Classification (SC). We have cast
the problem in the context of military settings and selected
the problems Automatic Modulation Classification (AMC)
and Network Intrusion Detection System (NIDS) tasks
using the RadioML and ACI IoT datasets, respectively.
We have shown that SC allows up to 55% risk reduction
for AMC with a 20% loss in coverage and near-zero
risk for NIDS with minimal coverage loss. We have also
analyzed the performance of SC under distribution shifts.
Our investigation has shown that existing art has limitations
when covariate and semantic shifts are presented to the
deep neural network (DNN). We have explored training
strategies such as entropy regularization and stochastic
weight averaging to enhance SC performance. We hope that
this paper will spur further investigations.
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